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Summary. Argumentation is presented which indicates 
that the additive decomposition of the total genetic varia- 
tion of a population into variation within and between 
(among) its subpopulations suffers from conceptual in- 
consistency. While the measurement of variation between 
subpopulations can be shown to be identical to the mea- 
surement of subpopulation differentiation, the notion of 
variation within subpopulations, when viewed as a single 
measurement, cannot be derived as an independent and 
cogent concept. Rather, it appears to be merely technical- 
ly defined as the arithmetic difference between the total 
variation and the variation between subpopulations, and 
this difference happens to be non-negative for concave 
measures of variation such as the (statistical) variance or 
certain measures of genetic diversity. In order to over- 
come the conceptual inconsistency, "variation between 
subpopulations" could be regarded as subpopulation dif- 
ferentiation and the notion of"variation within subpopu- 
lations" could be replaced by measurements of the degree 
to which the variation in the total population is repre- 
sented within the subpopulations. A complementary situ- 
ation with respect to total variation is thus realized once 
more, and appropriate measures can be directly derived 
from existing ones. 
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Introduction 

"Variation within subpopulations" and "variation be- 
tween subpopulations" are two concepts generally seen 
as being mutually complementary with respect to total 

variation in a subdivided population. This view is mani- 
fested in the statistical Eq. 

V(X) = E(V(XI Y)) + V(E(XI Y)), (1) 

where X and Y are random variables and X is real- 
valued; E and V denote the expectation and the variance, 
respectively; X I Y symbolizes X under the condition of Y. 
Thus, the total variance equals the sum of the expectation 
of the conditional variances and the variance of the con- 
ditional expectations. When X refers to the trait whose 
variation in a population is to be studied and Y repre- 
sents the subpopulations, then V(X) reflects the total 
variation, and E(V(XIY))  the variation within and 
V(E (X [ Y)) the variation between subpopulations. Clear- 
ly, the applicability of this equation depends on the as- 
sumption that the statistical variance is an appropriate 
measure of the extent of variation, and it does not hold 
if other measures of variation, such as that of the stan- 
dard deviation (x//V), are considered. This is worth em- 
phasizing since the standard deviation rather than the 
variance is usually considered to be the appropriate mea- 
sure of the variation of metric traits. Priority has appar- 
ently been given to the mathematical convenience associ- 
ated with computing second moments over the rigour of 
conceptual reasoning. 

In population genetics, the standard methods of mea- 
suring genetic variation in subdivided populations are 
also based on Eq. (1). Since frequencies of genetic types 
(alleles) serve as a means for characterizing variation, the 
problem arises of how to regard these measurements as a 
real-valued trait X. The solution to this problem consists 
in fixing a single genetic type and assigning to each indi- 
vidual a value of I or 0 according to whether it does or 
does not show this type (such variables are usually called 
"indicator variables"). The thus resulting trait, X i (i repre- 
sents the genetic type under consideration), has an ex- 
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pectation E (Xl) = Pl and a variance V(Xi)  = Pi (1 - pi), 
where p~ is the relative frequency of the i-th genetic type. 
Hence, when 

p~ (j) : = relative frequency of the i-th genetic type in the 
j- th subpopulat ion ( ~  Pi (J) = 1), and 

i 

cj :=  relative size of the j- th subpopulat ion (Z  ci = 1), 
J 

then E (V(Xi[  Y)) = ~, cj Pi (J) (1 - Pi (J)) = Pi - ~, c j .  Pi (J)2 
j J 

and V ( E ( X I I Y ) ) =  ~ ( p i ( j ) - p i ) 2 " c j .  Here Y refers to 
J 

the subpopulations and thus to the indices j, and 
p~ = 5Z p~ (j) - cj is the relative frequency of the i-th type in 

J 
the total population. 

In order to incorporate all genetic types, the sums 

v~ := E v ( x , )  = 1 - Z p ~ ,  
i i 

Vws :=  Y~E(V(Xi[  Y)) = Z cj . (1 - S~ pi( j )2) ,  
i j i 

VBs :=  E V(E (XII Y)) = Y~ ~, (Pi(J) -- Pl) 2" cj 
i i j 

are taken, for which analogously to Eq. (1) the identity 

Vr = Vws + VBs (2) 

holds. Again, the measure of the genetic variation in the 
total populat ion (VT) is additively composed of the mea- 
sures of genetic variation Vws within and Vns between 
subpopulations. In Wright's (1978) terminology VT = Yr ,  
Vws = YST and Vl~s = Yor,  while in Nei's (1973) terminol- 
ogy V T = H T, Vws = Hs  and VBs = Dsr .  When expressed 
as a fraction of the total variation, the variation between 
subpopulations becomes Vns/VT = Fs r = GST, where Fsr 
is Wright's notat ion and GsT is from Nei. The different 
viewpoints from which the quantities in Eq. (2) were 
derived by the two authors should not obscure the fact 
that they are mathematically identical. Consequently, 
these viewpoints could be considered alternative inter- 
pretations of the same formal result. 

Yet, despite the general acceptance and application of 
Eq. (2) in the analysis of populat ion genetic data, funda- 
mental objections can be raised to the conceptual and 
statistical reasoning of this Eq. First of all, VT, Vws and 
VBs cannot be assumed to be variances of a single real- 
valued trait, as would be required in order to employ the 
concept represented by Eq. (1). Moreover,  the use of 
the indicator variables X~, which is necessary to derive 
Eq. (2), is arbitrary. In view of this, it is almost super- 
fluous to add that to use variance to measure variation as 
mentioned above is basically questionable. 

In other approaches, variance as a measure of varia- 
tion is replaced by diversity, although the concept sug- 

gested by Eq. (1) or (2) is maintained. Diversity is a non- 
negative function v of the relative frequencies of the types, 
i.e. v = v (Pl,P2 ....  ), and it meets a number  of conditions 
among which concavity guarantees that vT > Z c~ �9 vj, 

J 

where v r : = v ( p l , p 2  . . . .  ) and v j :=v (p l ( j ) ,P20" )  . . . .  ). VT 
corresponds to the total variation V r ,  and since vj is the 
diversity in the j- th subpopulation, the average Z c~. v i 

J 

is addressed as the measure Vws of variation within sub- 
populations. In this approach,  variation between subpo- 
pulations can not be derived independently and is there- 
fore defined as the difference V r -  Vws. Note that the 
fulfilment of the necessary requirement V r - Vws > 0 is 
solely guaranteed by the assumption of concavity. For  
the particular form v = -  Y~Pi" logpi this was recom- 

mended by Lewontin (1972) to be a method describing 
the decomposit ion of variation. The greatest weakness of 
this method is that it provides no reasoning for why the 
difference V r - Vws should be an appropriate  measure of 
variation between subpopulations. The tacit assumption 
implied here is that the two kinds of variation are always 
complementary.  

In view of the arbitrariness that appears  in these ex- 
amples, it is desirable to restate the intuitive basis as well 
as the purposes of the concept independently of the lines 
of sight suggested by Eq. (1). Having done this, the state- 
ments implicit in Eq. (2) could be related in a possibly 
more direct manner  to the underlying concept. 

Conceptual considerations 

Whenever variation among the members  of a population 
is considered for qualitative characteristics, such as genes 
or genotypes, the frequencies of the types involved are of 
pr imary concern. The amount  of variation is, conse- 
quently, directly associated with the number  of types and 
their frequencies in the population. Highly variable 
populations contain many  different types at approxi-  
mately equal frequencies. The computat ion of variances 
or standard deviations, however, is not an immediate 
issue here because the individual measurements are not of 
a metric nature. 

If in a population all subpopulat ions (for convenience 
the term "deme" will be used instead of the term "subpo- 
pulat ion ' )  under study show the same pattern of varia- 
tion, then variation between demes is generally said to be 
absent. This is maintained for demes of different sizes as 
long as there are no differences in their relative composi- 
tion. In this sense, each deme is representative of the total 
population, so that variation within demes is equated to 
the variation in the total population. So far, the concept 
works, since all of the variation is due to variation within 
demes and none is due to variation between them. 
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At the other extreme, if all demes are unique in the 
sense that they do not share individuals of the same type, 
the pattern of variation in the total population can be 
obtained only by the union of all demes. Hence, total 
variation is completely dissociated between the demes, 
and one might be inclined to conclude that total variation 
is entirely due to variation between demes. However, the 
unique contribution of each deme to the total variation 
need not consist in a single type of individual, since 
uniqueness does not imply fixation of a deme if the num- 
ber of types in the population exceeds the number of 
demes. Thus, even though the maximum possible differ- 
ence between demes is reached, variation may exist with- 
in demes to arbitrary degrees, which contradicts the 
above conception and makes it very difficult to unambig- 
uously distinguish the contributions of the sources of 
variation (for more detailed reasoning, see Gregorius and 
Roberds 1986). 

This dilemma becomes even more apparent when the 
extreme values of the fraction V B s / V  T ~- FST are consid- 
ered. Provided V r > 0 (i.e. the total population is not 
fixed to a single type), Fsr attains its maximum value of 
1 if, and only if, all demes are fixed. This property is in 
complete accordance with the purpose for which Wright 
originally derived FST, namely to measure the extent of 
fixation. However, its validity is questionable for the pres- 
ent purpose, since FST = 1 independent of whether all 
demes are fixed for different types or, with only one ex- 
ception, for the same type. Thus, the situation where all 
demes make unique contributions to the total variation is 
equivalent to that where only a vanishing minority does. 

In fact, this criticism applies to a much broader class 
of measures of variation, including the above-mentioned 
concave measures of diversity. To see this, suppose that v 
now denotes any non-negative measure of variation 
based on relative or absolute frequencies, for which v = 0 
only if the population is fixed for a single type. Further- 
more, suppose that the variation Vws within demes is 
defined as any type of average over the amounts v of 
variation within each of the demes, and that this average 
becomes 0 only if all of the single deme amounts of 
variation are equal to 0. Then, if Eq. (2) is assumed 
to apply, V B s / V  T = ( V  T - -  V B s ) / V  T = 1 - V w s / V T ,  SO that 
Vss/V T = 1 if and only if Vws = 0. However, by assump- 
tion, Vws = 0 only if all demes are fixed. It thus turns out 
that any method of measuring variation within and be- 
tween demes suffers from the "fixation dilemma", if it falls 
into the category described by Eq. (2) and if Vws is an 
average of the single deme measures of variation. 

The last explanations strongly support the idea that 
the two types of variation, i.e. "within" and "between 
(among) demes',  should not be considered as comple- 
mentary with respect to the total variation; instead, they 
deserve to be treated separately and independently. For 
example, individuals that were previously classified as 

representing the same type may become distinguishable 
due to the availability of better techniques of identi- 
fication. In such a case, a situation of fixation of all demes 
could be changed drastically without affecting the quality 
of the demes to be unique. In other words, differences 
between demes need not be associated with differences 
within demes. This is an aspect of great importance in 
population genetics, where improvements in biochemical 
techniques enable the identification of ever increasing 
amounts of genetic variation. 

Ideally, an individual belonging to a particular deme 
contributes to variation between demes if its type does 
not occur in any of the other demes; that is, if it is unique 
for its deme. However, a given type is usually represented 
by more than one individual in several demes. Hence, 
among the individuals of a given type in a particular 
deme, only that number can be considered as unique for 
this deme, which remains after subtraction of all individu- 
als of the same type belonging to the other demes. If a 
type is evenly represented in all demes, then the whole 
type does not contribute to variation between demes, 
since none of the pertinent individuals is unique for any 
of the demes. Consequently, the sum over all individuals 
that are unique for any of the demes directly measures the 
amount of total variation that is due to only differences 
between demes (variation between demes). The mathe- 
matical formulation taking into account different deme 
sizes will be given in the next section. 

This principle of uniqueness can also be applied to 
arrive at a direct measure of variation within each single 
deme or within the total population. Each individual in 
the population (or deme) simply has to be conceived of as 
a deme of its own. There remains the problem of how to 
combine the single deme measures to give one measure 
for all demes simultaneously, i.e. to give the variation 
within demes. Taking averages is a popular solution, 
however, as long as no conceptually cogent reasons are 
given for why one and not another type of average is 
applied, a suspicion of arbitrariness lingers. One could 
even argue that disregarding the differences between the 
amounts of variation within the demes, as is the case with 
taking averages, ignores an essential characteristic of the 
pattern of variation in a subdivided population. For ex- 
ample, using averages, a situation where the amount of 
variation within demes is negatively correlated with their 
sizes could not be properly distinguishable from one 
where all demes show about the same amounts of varia- 
tion. In both situations, the amount of variation between 
demes could be identical, so that the above phenomenon 
would never have been detected. In fact, what is involved 
here is a third type of variation, namely variation between 
demes of variation within demes. Therefore, the concept 
of variation within demes, when viewed in terms of a 
single measurement, is probably not very useful and will 
thus not be further pursued. 
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A measure of variation between demes 

If in two populations n and n' of equal size n, individuals 
of type i have (absolute) frequency n~ and n'i, respectively, 
then the number of / - type individuals by which n differs 
from n' is equal to 

' 1 . ( n i _ n l  ) 1 . I n  i '[ ~i (n -- n') : = max {ni -- ni, 0} = 5 + 5 -- ni �9 

This follows immediately from the fact that if n~ > n'~, then 
n has an excess of n i - n'i /-type individuals when com- 
pared to n'. Otherwise, if n~ _< n'~, then n has no /-type 
individuals by which it differs from n'. 

Conversely, n' differs from n in 

1 1 
o~ i (u' - n) = 5" (n'i - ni) + 5" I n'i - n l l  

individuals of type i. Hence, since ~ n i = Z n'i by assump- 
i i 

tion, the total number of individuals by which n differs 
from n' in type is equal to 

1 ~(n --  n') = E o~i(n - -  I t ' )  : 5 ~-' I n i -  nil 
i i 

1 n i  

= n ' 2  . n 

When these considerations are extended to popula- 
tions n and m of unequal size n and m, respectively, it 
must be taken into account that the differences in the 
number of individuals of a given type may be due merely 
to the difference in population size, which would be an 
undesired effect. Hence, one population has to be com- 
pared with another on the basis of the relative composi- 
tion of the latter. This, in turn, requires that the latter be 
transformed in such away that it has the size of the 
former, but without changing its relative composition. 
Consequently, if the number of individuals by which n, 
say, differs from m is to be determined, the frequencies m i 

of the types in m have to be replaced by m~. n/m. Thus, 
c~ i ( n -  m) becomes 

ei(n - m) = max n i - mi" m '  0 

= n ' ~  m 

Therefore, in the general case 

~ ( n - - m ) =  n ' 2  i n - -  ' 

and 

1 1 
- .  ~ ( n - m )  = - - .  ~z(m-n)  = :  d(n,m).  
r/ m 

d (n, m) = d (m, n) is a measure of the distance between n 
and m (Gregorius 1974), and it specifies the proport ion of 

individuals by which two populations differ from each 
other in type. 

The above method can now be applied to a subdi- 
vided population to measure the amount  by which total 
variation is due to differences between demes. The key 
idea is to characterize each deme by the number of indi- 
viduals by which it differs in types from the remainder of 
the population. This number corresponds directly to 
those individuals in a deme whose types are not repeated 
in individuals belonging to any of the other demes. 
Hence, the sum of these individuals taken over all demes 
represents exactly that part of the total variation which is 
attributable exclusively to uniqueness of the demes and 
thus to differences between demes. In order to arrive at a 
formal representation, consider the following quantities: 

n i (j) : = the number of individuals of type i in demej ;  
nl : = Z nl (J) or the number of individuals of type i in 

J 
the total population; 

n ( j )  :=  Z hi ( j )  or the number of individuals in deme j 
i 

(deme size); 
n : = Z n ( j)  = Z ni or size of the total population. 

j i 

The number of individuals of type i by which deme j 
differs from the remainder of the population will now be 
denoted as ~ (j), and considering that this remainder has 
size n - n (j) and contains n~ - n i (j) individuals of type i, 
it follows from the foregoing derivations that 

( n ( j )  , 0} 
~i (J) = max (n i  (j)  - (n i - n i (j)) . n - - ~ j )  

l [. ,(j) . , - . , u t  + .,uI ~ ] 
= n ( J ) ' 2 [  n ( j )  n - - n ( j ~  n ( j )  n - - n O )  A 

Consequently, the number ~(j) of individuals by which 
demej  differs in types from the remainder of the popula- 
tion is equal to 

1 n i ( j )  n i - -  h i ( j )  

and, therefore, the total number of individuals ~ by which 
the demes differ from each other in types is 

J 

Thus, one arrives at the result that ~ divided by the total 
population size, which will be denoted as g = ~t/n, is the 
desired measure of the proport ion of the total variation 
that is due to differences between demes. In more precise 
wording: 6 equals the proportion of individuals in the 
total population by which the demes differ in types 
from each other. Setting c j : =  n ( j ) /n  and Dj :=  ~ ( j ) /n  ( j )  
(which is the distance between the j - th  deme and the 
remainder of the population), it follows that 6 = Z e j .  D j ,  

J 
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which is then seen to be identical to the measure pre- 
viously derived by Gregorius and Roberds (1986) for 
quantification of the amount  of deme differentiation. In 
other words, based on the present approach, the concepts 
of 'variation between demes' and 'deme differentiation' 
are identical. In particular, fi does not suffer from the 
"fixation dilemma", since it assumes its maximum value 
of I only when all demes are unique; that is, when they 
do not share individuals of the same type. 

Concluding remarks 

The measure fi of variation between demes can be con- 
sistently extended to a measure of variation within a 
non-subdivided population by considering each individ- 
ual as a deme of its own, as was mentioned before. This 
results in the measure fir of differentiation of the total 
population given by 

n~. ( n -  n 3  
f i t  = E - -  , 

i n .  ( n - l )  

which is identical to Simpson's measure of diversity (Gre- 
gorius 1987). Again, n~ is the number of / - type individuals 
in the total population; n -- Z n~ is the population size; 

i 

and 0 < J r  < 1. In accordance with the general features 
offi, fir = 0 only if the total population is fixed, and O r = 1 
only if all members of the population differ in type (are 
distinguishable). 

Hence, fi and its special form fir are measures of varia- 
tion which, at least at first sight, appear to correspond to 
the components Vns and V r in Eq. (2), whereas Vws re- 
mains as yet unspecified. If the concept underlying Eq. (2) 
should apply, the inequality V r > Vns must hold in all 
cases, which, by the assumed correspondence, should 
translate into the inequality fi < J T. However, the last 
inequality obviously does not hold in those cases where 
all demes are unique in their types and at least two indi- 
viduals (necessarily belonging to the same deme) are iden- 
tical in type, since then fi = 1 but fit < 1. 

Even if 6 is rejected for any reason as a measure 
corresponding to Vss, Simpson's widely applied measure 
fir still disturbs the picture evoked by Eq. (2). Consider 
the extreme situation where the demes are not differenti- 
ated, i.e. where the relative frequencies of the types within 
a deme are the same for all demes and thus for the total 
population (6 = 0). Then the fir-value of the j - th  deme 
is ( 1 -  Y~pZi). n ( j ) / ( n ( j ) -  1), where the pi's denote the 

i 

relative frequencies and nO') is the size of the j - th  
deme (Z n ( j ) =  n). Similarly, the fir-value of the total 

J 

population is (1 - - Z  p2).  n/(n -- 1). Consequently, since 
i 

n( j ) / ( n ( j )  - 1) > n/(n -- 1) for all j, the amount  of varia- 

tion within each deme exceeds that of the total popula- 
tion. Hence, by correspondence, Vws > V r independent of 
the averaging process applied for the computation of 
Vws. This again fundamentally contradicts the concept 
implied by Eq. (2). 

In conclusion, it appears that the notion of "variation 
within demes", when specified by a single value, has no 
generally valid conceptual basis. Therefore, the idea that 
total variation in a subdivided population should be 
composed of one part reflecting variation within demes 
and a seond part reflecting variation between demes is 
probably useless. The measurement of variation between 
demes appears to be tantamount  to the measurement of 
subpopulation differentiation, and this need not be strict- 
ly associated with measurements of variation in the total 
population. It is therefore recommended that the con- 
cepts of total variation and variation between demes be 
viewed as being largely mutually independent. The mea- 
sures proposed support this view. Moreover, it is sug- 
gested that the notion of "variation within demes" be 
replaced by the measurement of the degree to which the 
variation in the total population is represented within the 
demes, fi and its components Dj serve this purpose. 
Dj = 0, for example, means that the j - th  deme is com- 
pletely representative of (undifferentiated with respect to) 
the total population, while D i = 1 indicates the unique- 
ness of this deme. fi summarizes the single deme measures 
according to the weights of the demes. Hence, 1 - Dj and 
1 - fi can be addressed as measures of representation of 
the total variation by the demes, and they are thus exactly 
complementary to the respective measures of differentia- 
tion. 

Acknowledgements. The author expresses grateful appreciation 
to J. H. Roberds for helpful discussions. 

References 

Gregorius H-R (1974) Genetischer Abstand zwischen Populatio- 
nen. I. Zur Konzeption der genetischen Abstandsmessung. 
Silvae Genet 23:22-27 

Gregorius H-R (1987) The relationship between the concepts of 
genetic diversity and differentiation. Theor Appl Genet 
74:397-401 

Gregorius H-R, Roberds JH (1986) Measurement of genetical 
differentiation among subpopulations. Theor Appl Genet 
71: 826- 834 

Lewontin RC (1972) The apportionment of human diversity. 
In: Dobzhansky Th, Hecht MK, Steere WMC (eds) Evolu- 
tionary biology, vol. 6. Appleton-Century-Crofts, New York, 
pp 381-398 

Nei M (1973) Analysis of gene diversity in subdivided popula- 
tions. Proc Natl Acad Sei USA 70:3321-3323 

Wright S (1978) Evolution and the genetics of populations, 
vol. 4: variability within and among natural populations. 
The University of Chicago Press, Chicago 


